Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Rep ; 13(1): 22384, 2023 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-38104220

RESUMO

Plastic is a fossil-based synthetic polymer that has become an essential material in our daily life. Plastic pollution resulting from the accumulation of plastic objects has become problematic for our environment. Bioplastic can be a biodegradable environmentally friendly alternative for the synthetic plastic. In this paper, bioplastics based on polyvinyl alcohol (PVA)/gellan gum (GG) blend have been produced in three different compositions and their chemical structure, mechanical, morphological and thermal properties have been studied. Glycerol has been used as a plasticizer. To add extra features to the PVA/GG bioplastic, Psidium guajava (guava) leaves, GL, and chickpea, CP, extracts have been added to the PVA/GG (30/70) blend. Water and aqueous ethanol have been used in the extraction of GL and CP, respectively. The addition of the plant's extracts enhanced the tensile properties of the PVA/GG bioplastic. Weathering acceleration tests have been carried out to examine the degradation of the prepared bioplastics. Cytotoxicity studies revealed that the prepared bioplastic is safe to be used in food packaging applications. Water and oxygen permeability for the new PVA/GG bioplastic have also been studied. The addition of the plant extracts (GL and CP extracts) increased the oxygen and water permeability to different extents. Bioplastic life cycle assessment (LCA) and CO2 emissions in comparison to fossil-based plastic have been investigated. From all the results, PVA/GG based bioplastic proved to be a degradable, safe and effective alternative for fossil-based plastics in food packaging applications.


Assuntos
Cicer , Psidium , Álcool de Polivinil/química , Embalagem de Alimentos , Plásticos/química , Água/química , Biopolímeros , Oxigênio
2.
Sci Rep ; 13(1): 19633, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37949924

RESUMO

Intensive uses of Calcium hydroxide (Ca(OH)2NPs), calcium titanate (CaTiO3NPs) and yttrium oxide (Y2O3NPs) nanoparticles increase their environmental release and human exposure separately or together through contaminated air, water and food. However, too limited data are available on their genotoxicity. Therefore, this study explored the effect of Ca(OH)2NPs, CaTiO3NPs or/and Y2O3NPs administration on the genotoxicityand oxidative stress induction in mice hepatic tissue. Mice were orally administered Ca(OH)2NPs, CaTiO3NPs and Y2O3NPs separately or simultaneously together at a dose level of 50 mg/kg b.w. for two successive weeks (3 days per week). Marked induction of DNA damage noticed after oral administration of Ca(OH)2NPs or CaTiO3NPs alone together with high Ca(OH)2NPs induced reactive oxygen species (ROS) generation and a slight CaTiO3NPs induced ROS production were highly decreased after simultaneous coadministration of administration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs up to the negative control level. Oral administration of Y2O3NPs alone also did not cause observable changes in the genomic DNA integrity and the ROS generation level compared to the negative control levels. Similarly, significant elevations in P53 gene expression and high reductions in Kras and HSP-70 genes expression were observed only after administration of Ca(OH)2NPs alone, while, remarkable increases in the Kras and HSP-70 genes expression and non-significant changes in p53 gene expression were noticed after administration of CaTiO3NPs and Y2O3NPs separately or simultaneously together with Ca(OH)2NPs. Conclusion: Ca(OH)2NPs exhibited the highest genotoxic effect through oxidative stress induction and disruption of apoptotic (p53 and Kras) and protective (HSP-70) genes expression. Slight DNA damage was noticed after CaTiO3NPs administration. However, administration of Y2O3NPs alone was non-genotoxic and coadministration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs restored genomic DNA integrity and normal expression of apoptotic p53 and protective HSP-70 genes disrupted by Ca(OH)2NPs and CaTiO3NPs. Thus co-administration of Y2O3NPs with Ca(OH)2NPs and CaTiO3NPs is recommended to counter Ca(OH)2NPs and CaTiO3NPs induced genotoxicity and oxidative stress.


Assuntos
Cálcio , Nanopartículas , Camundongos , Humanos , Animais , Cálcio/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Hidróxido de Cálcio/toxicidade , Proteínas Proto-Oncogênicas p21(ras)/genética , Estresse Oxidativo , Proteína Supressora de Tumor p53/metabolismo , Nanopartículas/toxicidade , Dano ao DNA , DNA/metabolismo
3.
Sci Rep ; 13(1): 13523, 2023 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-37598254

RESUMO

The Kidneys remove toxins from the blood and move waste products into the urine. However, the accumulation of toxins and fluids in the body leads to kidney failure. For example, the overuse of acrylamide and titanium dioxide nanoparticles (TiO2NPs) in many food and consumer products increases human exposure and risks; however, there are almost no studies available on the effect of TiO2NPs coadministration with acrylamide on the integrity of genomic and mitochondrial DNA. Accordingly, this study was conducted to estimate the integrity of genomic and mitochondrial DNA in the renal tissue of mice given acrylamide and TiO2NPs. To achieve this goal, mice were administrated orally TiO2NPs or/and acrylamide at the exposure dose levels (5 mg/kg b.w) and (3 mg/kg b.w), respectively, five times per week for two consecutive weeks. Concurrent oral administration of TiO2NPs with acrylamide caused remarkable elevations in the tail length, %DNA in tail and tail moment with higher fragmentation incidence of genomic DNA compared to those detected in the renal tissue of mice given TiO2NPs alone. Simultaneous coadministration of TiO2NPs with acrylamide also caused markedly high elevations in the reactive oxygen species (ROS) production and p53 expression level along with a loss of mitochondrial membrane potential and high decreases in the number of mitochondrial DNA copies and expression level of ß catenin gene. Therefore, from these findings, we concluded that concurrent coadministration of acrylamide with TiO2NPs augmented TiO2NPs induced genomic DNA damage and mitochondrial dysfunction through increasing intracellular ROS generation, decreasing mitochondrial DNA Copy, loss of mitochondrial membrane potential and altered p53 and ß catenin genes expression. Therefore, further studies are recommended to understand the biological and toxic effects resulting from TiO2NPs with acrylamide coadministration.


Assuntos
DNA Mitocondrial , Nanopartículas , Humanos , Animais , Camundongos , DNA Mitocondrial/genética , Espécies Reativas de Oxigênio , Proteína Supressora de Tumor p53/genética , beta Catenina , Genômica , Mitocôndrias/genética , Acrilamida/toxicidade
4.
Biol Trace Elem Res ; 201(5): 2311-2318, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-35907160

RESUMO

Extensive uses of calcium titanate nanoparticles (CaTiO3-NPs) and erbium oxide nanoparticles (Er2O3-NPs) increase their release into the environment and human exposure, particularly through skin contact. However, there are almost no studies available on the effect of these nanoparticles on skin integrity. Therefore, this study was undertaken to estimate CaTiO3-NP- or Er2O3-NP-induced cytotoxicity and genotoxicity in normal human skin fibroblast (HSF) cells. Cell viability was measured using sulforhodamine B (SRB) assay, while the level of DNA damage was detected using the alkaline comet assay. The intracellular levels of reactive oxygen species (ROS) as well as the expression level of p53, Bax, and Bcl2 genes were detected. Although the viability of HSF cells was non-markedly changed after 24 h, prolonged treatment with CaTiO3-NPs or Er2O3-NPs for 72 h induced concentration-dependent death of HSF cells. Treatment of normal HSF cells with IC50/72 h of CaTiO3-NPs or Er2O3-NPs did not cause marked changes in the intracellular level of ROS, DNA damage parameters, and expression levels of apoptosis genes compared to their values in the untreated HSF cells. We thus concluded that CaTiO3-NPs or Er2O3-NPs cause time- and concentration-dependent cytotoxicity toward normal HSF cells. However, safe and non-genotoxic effects were demonstrated by the apparent non-significant changes in intracellular ROS level, DNA integrity, and apoptotic genes' expression after exposure of normal HSF cells to nanoparticles. Thus, it is recommended that further studies be conducted to further understand the toxic and biological effects of CaTiO3-NPs and Er2O3-NPs.


Assuntos
Nanopartículas Metálicas , Nanopartículas , Humanos , Espécies Reativas de Oxigênio/metabolismo , Dano ao DNA , Nanopartículas/toxicidade , Sobrevivência Celular , Fibroblastos , Nanopartículas Metálicas/toxicidade , Estresse Oxidativo
5.
Int J Radiat Biol ; 99(2): 318-328, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35549975

RESUMO

PURPOSE: Essential oils (EOs) obtained from spices, herbs, and medicinal plants are well known in traditional medicine and are an area of interest due to their various biological activities. Therefore, the present study investigates the chemical composition, phytochemical properties, as well as the biological activity of EOs, recovered from un-irradiated and irradiated (2.5, 5, and 10 kGy) caraway seeds. MATERIALS AND METHODS: Carum carvi L. seeds were irradiated with gamma irradiation at dose levels 2.5, 5, and 10 kGy, then EOs were recovered from all the samples. The chemical composition, phenols, and flavonoids content were evaluated. As well, antimicrobial and antitumor activities against the two cell lines [colorectal adenocarcinoma (Caco-2) and liver cancer (HepG-2)] were investigated. RESULTS: The results indicated the percentage of oil increased by radiation, especially a dose of 10 kGy, which gave the highest percentage (3.50%) compared to the control. Also, the Gas Chromatography/Mass Spectrometry (GC-MS) analysis revealed the presence of 26 compounds in the essential oil extracts. The main constituent of caraway seeds EOs was Carvone followed by Limonene. According to the results, there was an increase in the content of phenols and flavonoids by using gamma rays compared with control, the maximum increase was observed at dose level 10 kGy (13.70 and 7.38 mg/g oil, respectively) followed by 5 kGy (11.20 and 5.86 mg/g oil, respectively). The antioxidant properties of the caraway essential oils were increased by increasing the irradiation dose level (2.5-10 kGy) analyzed by DPPH radical and metal chelating activity. Caraway essential oils have an antimicrobial action against Gram-positive and Gram-negative bacteria as well as fungi. The antimicrobial activity was increased as the irradiation dose was raised and the10 kGy dose was more effective in suppressing the growth of bacteria and fungi. Additionally, the caraway essential oils have anticancer activity against the two cell lines studied; colorectal adenocarcinoma (Caco-2) and liver cancer cell line (HepG-2) as reduced the cell viability and density. CONCLUSION: The 10 kGy dose was more effective for oil yield, phenols, flavonoids, and antioxidant activity as well as antibacterial and antifungal activities. Furthermore, the caraway essential oils indicated anticancer activity against the two cell lines studied; colorectal adenocarcinoma (Caco-2) and liver cancer cell line (HepG-2) as reduced the cell viability and density. So caraway could be considered an important herb with multiple therapeutic uses.


Assuntos
Anti-Infecciosos , Carum , Neoplasias Hepáticas , Óleos Voláteis , Humanos , Óleos Voláteis/farmacologia , Carum/química , Antibacterianos , Células CACO-2 , Bactérias Gram-Negativas , Bactérias Gram-Positivas , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/análise , Antioxidantes/farmacologia , Antioxidantes/química , Sementes , Anti-Infecciosos/farmacologia , Anti-Infecciosos/análise , Fenóis/análise
6.
Cancer Cell Int ; 22(1): 355, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376858

RESUMO

BACKGROUND: The distinctive properties and high activity of calcium titanate nanoparticles (CaTiO3-NPs) increase their use in many products. However, the cytotoxic and genotoxic effects of CaTiO3-NPs in human cancer cell lines have not been well studied. Therefore, this study was conducted to explore CaTiO3-NPs induced cytotoxicity, genomic instability and apoptosis in human breast cancer (MCF-7) cells. METHODS: Sulforhodamine B (SRB) and the alkaline comet assays were done to study cell viability and DNA damage induction, respectively. Apoptosis induction and cell cycle distribution were analyzed using flow cytometry. The level of intracellular reactive oxygen species (ROS) was studied, and the expression levels of p53, Bax and Bcl2 genes were also measured. RESULTS: The results of the Sulforhodamine B (SRB) cytotoxicity assay showed that viability of MCF-7 cells was not affected by CaTiO3-NPs treatment for 24 h, however, exposure to CaTiO3-NPs for 72 h caused concentrations dependent death of MCF-7 cells. Treatment with CaTiO3-NPs for 72 h caused marked increases in intracellular ROS level and induced DNA damage. Treatment of MCF-7 cells with CaTiO3-NPs also caused MCF-7 cell cycle arrest at the G0 and S phases and s triggered apoptosis of MCF-7 cells by causing simultaneous increases in the expression levels of apoptotic p53 and Bax genes and a decrease in the expression level of anti-apoptotic Bcl2 gene. CONCLUSION: Collectively, it was concluded that CaTiO3-NPs cause time- and concentration-dependent cytotoxic effects in human MCF-7 cells through induction of ROS generation, genomic instability and apoptosis. Thus it is recommended that further in vitro and in vivo studies are therefore recommended to understand the cytotoxic and biological effects of CaTiO3-NPs.

7.
Gels ; 7(4)2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34842694

RESUMO

Over the past several decades, the development of engineered small particles as targeted and drug delivery systems (TDDS) has received great attention thanks to the possibility to overcome the limitations of classical cancer chemotherapy, including targeting incapability, nonspecific action and, consequently, systemic toxicity. Thus, this research aims at using a novel design of Poly(N-isopropylacrylamide) p(NIPAM)-based microgels to specifically target cancer cells and avoid the healthy ones, which is expected to decrease or eliminate the side effects of chemotherapeutic drugs. Smart NIPAM-based microgels were functionalized with acrylic acid and coupled to folic acid (FA), targeting the folate receptors overexpressed by cancer cells and to the chemotherapeutic drug doxorubicin (Dox). The successful conjugation of FA and Dox was demonstrated by dynamic light scattering (DLS), Fourier-transform infrared (FTIR) spectroscopy, thermogravimetric analysis (TGA), UV-VIS analysis, and differential scanning calorimetry (DSC). Furthermore, viability assay performed on cancer and healthy breast cells, suggested the microgels' biocompatibility and the cytotoxic effect of the conjugated drug. On the other hand, the specific tumor targeting of synthetized microgels was demonstrated by a co-cultured (healthy and cancer cells) assay monitored using confocal microscopy and flow cytometry. Results suggest successful targeting of cancer cells and drug release. These data support the use of pNIPAM-based microgels as good candidates as TDDS.

8.
Plants (Basel) ; 10(2)2021 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-33671374

RESUMO

Biosorption is a bioremediation approach for the removal of harmful dyes from industrial effluents using biological materials. This study investigated Methylene blue (M. blue) and Congo red (C. red) biosorption from model aqueous solutions by two marine macro-algae, Ulva fasciata and Sargassum dentifolium, incorporated within acrylic fiber waste to form composite membranes, Acrylic fiber-U. fasciata (AF-U) and Acrylic fiber-S. dentifolium (AF-S), respectively. The adsorption process was designed to more easily achieve the 3R process, i.e., removal, recovery, and reuse. The process of optimization was implemented through one factor at a time (OFAT) experiments, followed by a factorial design experiment to achieve the highest dye removal efficiency. Furthermore, isotherm and kinetics studies were undertaken to determine the reaction nature. FT-IR and SEM analyses were performed to investigate the properties of the membrane. The AF-U membrane showed a significant dye removal efficiency, of 88.9% for 100 ppm M. blue conc. and 79.6% for 50 ppm C. red conc. after 240 min sorption time. AF-S recorded a sorption capacity of 82.1% for 100 ppm M. blue conc. after 30 min sorption time and 85% for 100 ppm C. red conc. after 240 min contact time. The membranes were successfully applied in the 3Rs process, in which it was found that the membranes could be used for five cycles of the removal process with stable efficiency.

9.
Biochim Biophys Acta Mol Cell Res ; 1868(6): 118995, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33667527

RESUMO

Locally advanced breast cancer (LABC) is an aggressive disease characterized by late clinical presentation, large tumor size, treatment resistance and low survival rate. Expression of EGFR/HER2 and activation of intracellular tyrosine kinase domains in LABC are associated with poor prognosis. Thus, target therapies such as the anti-receptor tyrosine kinases lapatinib drug have been more developed in the past decade. The response to lapatinib involves the inhibition of RTKs and subsequently signaling molecules such as Src/STAT3/Erk1/2 known also to be activated by the cytokines in the tumor microenvironment (TME). The aim of the present study is to identify the major cytokine that might contribute to lapatinib resistance in EGFR+/HER2+ LABC patients. Indeed, tumor associated macrophages (TAMs) are the main source of cytokines in the TME. Herein, we isolated TAMs from LABC during modified radical mastectomy (MRM). Cytokine profile of TAMs revealed that IL-8 is the most prominent highly secreted cytokine by TAMs of LABC patients. Using in-vitro cell culture model we showed that recombinant IL-8 (50 and 100 ng/mL) at different time intervals interfere with lapatinib action via activation of Src/EGFR and signaling molecules known to be inhibited during treatment. We proposed that to improve LABC patients' response to lapatinib treatment it is preferred to use combined therapy that neutralize or block the action of IL-8.


Assuntos
Neoplasias da Mama/cirurgia , Resistencia a Medicamentos Antineoplásicos , Interleucina-8/metabolismo , Macrófagos Associados a Tumor/imunologia , Adulto , Idoso , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Receptores ErbB/metabolismo , Feminino , Humanos , Lapatinib/farmacologia , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Mastectomia , Pessoa de Meia-Idade , Receptor ErbB-2/metabolismo , Transdução de Sinais/efeitos dos fármacos
10.
Materials (Basel) ; 13(21)2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-33143385

RESUMO

There is a pressing demand to synthesize polymers that have antibacterial and antifungal properties. The aim of this study was to synthesize a crosslinked hydrophilic terpolymer with acrylamide, acrylonitrile, acrylic acid, acrylamido-2-methylpropane sulphonic acid and ethylene glycol dimethacrylate as a crosslinker. The chemical structure and thermal stability of the prepared cross-linked terpolymers were confirmed by spectroscopic and thermal analyses. Moreover, the swelling experiments were performed to investigate their swelling capacity. Furthermore, the efficiency of the synthesized cross-linked polymer gels was assessed as an antimicrobial agent against Gram-positive, Gram-negative bacteria and fungal strains. The synthesized polymers showed broad inhibition effect, with more antibacterial activity by the AM4 polymer sample containing high percentage of acrylonitrile monomer in the prepared terpolymers (4 mol ratio of acrylic acid: 1 mol ratio of acrylamide: 16 mole ratio of acrylonitrile against Gram negative bacterial strain), while sample M3 terpolymer (1 mol ratio of acrylamide: 1 mole ratio acrylonitrile: 3 mole ratio of acrylamido-2-methylpropane sulphonic acid) showed a promising anti-fungal activity.

11.
Nanomaterials (Basel) ; 10(2)2020 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-32033111

RESUMO

Crude oil pollution of water bodies is a worldwide problem that affects water ecosystems and is detrimental to human health and the diversity of living organisms. The objective of this study was to assess the ability of water hyacinth (Eichhornia crassipes (Mart.) Solms) combined with the presence of magnetic nanoparticles capped with natural products based on Myrrh to treat fresh water contaminated by crude petroleum oil. Magnetic nanoparticles based on magnetite capped with Myrrh extracts were prepared, characterized, and used to adsorb heavy components of the crude oil. The hydrophobic hexane and ether Myrrh extracts were isolated and used as capping for magnetite nanoparticles. The chemical structures, morphologies, particle sizes, and magnetic characteristics of the magnetic nanoparticles were investigated. The adsorption efficiencies of the magnetic nanoparticles show a greater efficiency to adsorb more than 95% of the heavy crude oil components. Offsets of Water hyacinth were raised in bowls containing Nile River fresh water under open greenhouse conditions, and subjected to varying crude oil contamination treatments of 0.5, 1, 2, 3, and 5 mL/L for one month. Plants were harvested and separated into shoots and roots, oven dried at 65 °C, and grounded into powder for further analysis of sulphur and total aromatic and saturated hydrocarbons, as well as individual aromatic constituents. The pigments of chlorophylls and carotenoids were measured spectrophotometrically in fresh plant leaves. The results indicated that the bioaccumulation of sulphur in plant tissues increased with the increased level of oil contamination. Water analysis showed significant reduction in polyaromatic hydrocarbons. The increase of crude oil contamination resulted in a decrease of chlorophylls and carotenoid content of the plant tissues. The results indicate that the water hyacinth can be used for remediation of water slightly polluted by crude petroleum oil. The presence of magnetite nanoparticles capped with Myrrh resources improved the remediation of water highly polluted by petroleum crude oil.

12.
Recent Pat Food Nutr Agric ; 11(3): 193-201, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32065108

RESUMO

BACKGROUND: Rapid lifestyle, especially among people living in urban areas, has led to increasing reliance on the processed food market. Unfortunately, harmful effects caused by the excessive use of food additives in such type of industry are often neglected. OBJECTIVE: This proposal investigates in vitro cytotoxic and apoptotic effects of three food preservatives commonly consumed in daily meals; sodium sulphite, boric acid, and benzoic acid. METHODS: The effect of the three preservatives on cell viability was tested on two different cell lines; normal liver cell line THLE2 and human hepatocellular carcinoma cancer cell line HepG2 using MTT assay. Cell cycle arrest was measured using flow cytometry by propidium iodide. Measurement of expression levels of two central genes, p53 and bcl-2 that play key roles in cell cycle and apoptosis was carried out in HepG2 cells using real time-PCR. RESULTS: Although the effect was more significantly realized in the HepG2 cell line, the viability of both cell lines was decreased by all of the three tested compounds. Flow cytometric analysis of HepG2 cells treated with sodium sulphite, boric acid, and benzoic acid has revealed an increase in G2/M phase cell cycle arrest. In Sodium sulphite and boric acid-treated cells, expression levels of p53 were up-regulated, while that of the Bcl2 was significantly down-regulated. On the other hand, Benzoic acid has shown an anti-apoptotic feature based on the increased expression levels of Bcl-2 in treated cells. CONCLUSION: In conclusion, all of the tested compounds have decreased the cell line viability and induced both cell cycle arrest and apoptotic events indicating their high potential of being cytotoxic and genotoxic materials.


Assuntos
Apoptose/efeitos dos fármacos , Ácido Benzoico/farmacologia , Ácidos Bóricos/farmacologia , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Aditivos Alimentares/farmacologia , Sulfitos/farmacologia , Ácido Benzoico/toxicidade , Ácidos Bóricos/toxicidade , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Citometria de Fluxo , Aditivos Alimentares/toxicidade , Formazans , Genes bcl-2 , Genes p53 , Células Hep G2 , Hepatócitos , Humanos , Reação em Cadeia da Polimerase em Tempo Real , Sulfitos/toxicidade , Sais de Tetrazólio
13.
Materials (Basel) ; 12(21)2019 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-31684135

RESUMO

In the past few years, the development of hydrogel properties has led to the emergence of nanocomposite hydrogels that have unique properties that allow them to be used in various different fields and applications such as drug delivery, adsorption soil containing, tissue engineering, wound dressing, and especially antimicrobial applications. Thus, this study was conducted in order to fabricate a novel crosslinked terpolymer nanocomposite hydrogel using the free radical copolymerization method based on the usage of 2-acrylamido-2-methylpropane sulfonic acid (AMPS), acrylamide (AAm), acrylonitrile (AN), and acrylic acid (AA) monomers and iron oxide (Fe3O4) magnetic nanoparticles and using benzoyl peroxide as an initiator and ethylene glycol dimethacrylate (EGDMA) as a crosslinker. The structure of the synthesized composite was confirmed using Fourier transform infrared (FTIR) spectroscopy and x-ray powder diffraction (XRD) measurements. Furthermore, the surface morphology and the magnetic nanoparticle distributions were determined by scanning electron microscopy (SEM) measurement. In addition, the swelling capacity of the hydrogel nanocomposite was measured using the swelling test. Lastly, the efficiency of the produced composite was evaluated as an antimicrobial agent for Gram-positive and Gram-negative bacterial strains and a fungal strain.

14.
Gene ; 707: 172-177, 2019 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-30943439

RESUMO

Long non-coding RNA (LncRNA) is recently linked to various types of cancers, CCAT and PVT1 are two LncRNAs linked to t(8;21) associated Acute Myeloid Leukemia, the interplay between CCAT, PVT1 and the MYC proto-oncogene implicated in t(8;21) could present an opportunity for using LncRNA as prognostic biomarker or a target for therapy, We investigated the expression levels of LncRNAs in 70 patients; 30 with t(8;21) positive AML and 40 with t(8;21) negative AML, We found that CCAT1 and PVT1 are expressed in higher levels in t(8;21) positive -AML by 5.3 folds compared to t(8;21) negative group; the expression values were significantly associated with high-risk clinical criteria; moreover, they are associated with lower overall survival (OS) rate and leukemia-free survival (LFS), however we didn't find a statistically significant cut-off value of LncRNAs using the Cox regression analysis for Lnc_PVT1 except with LFS, we conclude that high expression levels of CCAT1 and PVT1 are associated with poor prognosis while being poor prognostic biomarkers in t(8;21) associated AML.


Assuntos
Cromossomos Humanos Par 21/genética , Cromossomos Humanos Par 8/genética , Leucemia Mieloide Aguda/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Biomarcadores Tumorais/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Pessoa de Meia-Idade , Prognóstico , Proto-Oncogene Mas , Proteínas Proto-Oncogênicas c-myc/genética , Análise de Regressão , Análise de Sobrevida , Translocação Genética , Regulação para Cima , Adulto Jovem
15.
Asian Pac J Cancer Prev ; 18(11): 3167-3171, 2017 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-29172295

RESUMO

HCV induced hepatitis and hepatocellular carcinoma as its sequel are major health problems world-wide and especially in Egypt. For diagnosis and during treatment of liver diseases, liver functions are monitored through determination of serum levels of liver enzymes and α-fetoprotein although the obtained information is generally not sufficient for either early detection of hepatic insult or effective follow up of therapeutic effects. More sensitive biomarkers may help to achieve these goals. MiRNAs are small non-coding RNAs that have an important role in gene expression and regulation. Many, such as miR-224, miR-215, miR-143 are correlated with tumor appearance and with the degree of fibrosis in lung, breast and colon cancer. This study was performed to estimate the level of these miRNAs in serum of patients with HCV-associated hepatitis and HCC in relation to grade of hepatitis, stage of fibrosis and differentiation of tumor tissue. In addition, correlations between serological and tissue levels were assessed. A total of 80 patients were examined, out of which 50 were included in the study. Blood samples and tissue specimens from malignant tumor and corresponding non-tumor tissue of HCV hepatitis patients were collected. Blood samples from 20 healthy volunteers were also obtained as controls. It was found that miRNAs profiles differed in HCC patients compared to controls and HCV-associated hepatitis cases. Distinction of tumor grade and fibrosis stage of patients as well as between different grades of tumor differentiation proved possible, making miRNAs promising biomarkers for diagnosis and assessment of treatment response of HCC patients.

16.
Arch Pharm Res ; 2014 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-25322968

RESUMO

L-Arginase, hydrolyzing L-arginine to L-ornithine and urea, is a powerful anticancer, L-arginine-depleting agent, against argininosuccinate synthase expressing tumors. Otherwise, the higher antigenicity and lower thermal stability of this enzyme was the main biochemical hurdles. Since, the intrinsic thermal stability of enzymes follow the physiological temperature of their producer, thus, characterization of L-arginase from thermotolerant Penicillium chrysogenum was the objective of this study. L-Arginase (Arg) was purified to its homogeneity from P. chrysogenum by 10.1-fold, with 37.0 kDa under denaturing PAGE, optimum reaction at 50 °C, pH stability (6.8-7.9), with highest molar ratio of constitutional arginine, glutamic acid, lysine and aspartic acid. The purified enzyme was PEGylated and immobilized on chitosan, with 41.9 and 22.1 % yield of immobilization. At 40 °C, the T1/2 value of free-Arg, PEG-Arg and Chit-Arg was 10.4, 15.6, 20.5 h, respectively. The free-Arg and Chit-Arg have a higher affinity to L-arginine (K m 4.8 mM), while, PEG-Arg affinity was decreased by about 3 fold (K m 15.2 mM). The inhibitory constants to the free and PEG-Arg were relatively similar towards HA and PPG. The IC50 for the free enzyme against HEPG-2 and A549 tumor cells was 0.136 and 0.165 U/ml, comparing to 0.232 and 0.496 U/ml for PEG-Arg, respectively. The in vivo T1/2 to the free Arg and PEG-Arg was 16.4 and 20.4 h, respectively as holo-enzyme. The residual L-arginine level upon using free Arg was 156.9 and 144.5 µM, after 6 and 8 h, respectively, regarding to initials at 253.6 µM, while for Peg-Arg the level of L-arginine was nil till 7 h of initial dosing. The titer of IgG was induced by 10-15 % in response to free-Arg after 28 days comparing to IgG titer for PEG-Arg.

17.
Lancet Infect Dis ; 14(2): 140-5, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24355866

RESUMO

BACKGROUND: Middle East respiratory syndrome coronavirus (MERS-CoV) causes severe lower respiratory tract infection in people. Previous studies suggested dromedary camels were a reservoir for this virus. We tested for the presence of MERS-CoV in dromedary camels from a farm in Qatar linked to two human cases of the infection in October, 2013. METHODS: We took nose swabs, rectal swabs, and blood samples from all camels on the Qatari farm. We tested swabs with RT-PCR, with amplification targeting the E gene (upE), nucleocapsid (N) gene, and open reading frame (ORF) 1a. PCR positive samples were tested by different MERS-CoV specific PCRs and obtained sequences were used for phylogentic analysis together with sequences from the linked human cases and other human cases. We tested serum samples from the camels for IgG immunofluorescence assay, protein microarray, and virus neutralisation assay. FINDINGS: We obtained samples from 14 camels on Oct 17, 2013. We detected MERS-CoV in nose swabs from three camels by three independent RT-PCRs and sequencing. The nucleotide sequence of an ORF1a fragment (940 nucleotides) and a 4·2 kb concatenated fragment were very similar to the MERS-CoV from two human cases on the same farm and a MERS-CoV isolate from Hafr-Al-Batin. Eight additional camel nose swabs were positive on one or more RT-PCRs, but could not be confirmed by sequencing. All camels had MERS-CoV spike-binding antibodies that correlated well with the presence of neutralising antibodies to MERS-CoV. INTERPRETATION: Our study provides virological confirmation of MERS-CoV in camels and suggests a recent outbreak affecting both human beings and camels. We cannot conclude whether the people on the farm were infected by the camels or vice versa, or if a third source was responsible. FUNDING: European Union projects EMPERIE (contract number 223498), ANTIGONE (contract number 278976), and the VIRGO consortium.


Assuntos
Camelus/virologia , Infecções por Coronavirus/veterinária , Coronavirus/isolamento & purificação , Surtos de Doenças/veterinária , Reservatórios de Doenças/virologia , Zoonoses/diagnóstico , Adulto , Animais , Sequência de Bases , Coronavirus/genética , Infecções por Coronavirus/diagnóstico , Infecções por Coronavirus/epidemiologia , Infecções por Coronavirus/virologia , Humanos , Masculino , Pessoa de Meia-Idade , Dados de Sequência Molecular , Filogenia , Catar/epidemiologia , RNA Viral/análise , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Análise de Sequência de RNA , Zoonoses/epidemiologia , Zoonoses/virologia
18.
GM Crops Food ; 4(1): 36-49, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23333856

RESUMO

Cotton is the world's leading natural fiber and second most important oilseed crop and has been a focus of genetic, systematic and breeding research. The genetic and physiological bases of some important agronomic traits in cotton were investigated by QTL mapping through constructing of genetic map with chromosomal assignment. A segregating F2 population derived from an interspecific cross (G. barbadense x G. hirsutum) between two genotypes, cvs. "Giza 83" and "Deltapine" was used in this study. Different molecular markers including SSR, EST, EST-SSR, AFLP and RAPD were employed to identify markers that reveal differences between the parents. In total 42 new markers were merged with 140 previously mapped markers to produce a new map with 182 loci covering a total length of 2370.5 cM. Among these new markers, some of them were used to assign chromosomes to the produced 26 linkage groups. The LG2, LG3, LG11 and LG26 were assigned to chromosomes 1, 6, 5 and 20 respectively. Single point analysis was used to identify genomic regions controlling traits for plant height, number of nodes at flowering time, bolling date, days to flowering and number of bolls. In total 40 significant QTL were identified for the five traits on 11 linkage groups (1, 2, 3, 4, 5, 10, 11, 12, 18, 19 and 23). This work represents an improvement of the previously constructed genetic map in addition to chromosomal assignment and detection of new significant QTL for the five traits in Egyptian cotton. The Significant QTLs detected in this study can be employed in marker assisted selection for molecular breeding programs aiming at developing cotton cultivars with improved agronomic traits.


Assuntos
Agricultura , Mapeamento Cromossômico/métodos , Cromossomos de Plantas/genética , Ligação Genética , Gossypium/genética , Locos de Características Quantitativas/genética , Característica Quantitativa Herdável , Análise do Polimorfismo de Comprimento de Fragmentos Amplificados , Segregação de Cromossomos/genética , Cruzamentos Genéticos , Etiquetas de Sequências Expressas , Gossypium/anatomia & histologia , Repetições de Microssatélites/genética , Polimorfismo Genético , Técnica de Amplificação ao Acaso de DNA Polimórfico
19.
Theor Appl Genet ; 109(7): 1417-25, 2004 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-15517148

RESUMO

Drought limits cereal yields in several regions of the world and plant water status plays an important role in tolerance to drought. To investigate and understand the genetic and physiological basis of drought tolerance in barley, differentially expressed sequence tags (dESTs) and candidate genes for the drought response were mapped in a population of 167 F8 recombinant inbred lines derived from a cross between "Tadmor" (drought tolerant) and "Er/Apm" (adapted only to specific dry environments). One hundred sequenced probes from two cDNA libraries previously constructed from drought-stressed barley (Hordeum vulgare L., var. Tokak) plants and 12 candidate genes were surveyed for polymorphism, and 33 loci were added to a previously published map. Composite interval mapping was used to identify quantitative trait loci (QTL) associated with drought tolerance including leaf relative water content, leaf osmotic potential, osmotic potential at full turgor, water-soluble carbohydrate concentration, osmotic adjustment, and carbon isotope discrimination. A total of 68 QTLs with a limit of detection score > or =2.5 were detected for the traits evaluated under two water treatments and the two traits calculated from both treatments. The number of QTLs identified for each trait varied from one to 12, indicating that the genome contains multiple genes affecting different traits. Two candidate genes and ten differentially expressed sequences were associated with QTLs for drought tolerance traits.


Assuntos
Desastres , Etiquetas de Sequências Expressas , Hordeum/genética , Mapeamento Cromossômico , Cromossomos de Plantas/genética , Clima , Genes de Plantas , Marcadores Genéticos , Endogamia , Hibridização de Ácido Nucleico , Proteínas de Plantas/genética , Locos de Características Quantitativas , Mapeamento por Restrição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA